
9/16/2006 Copyright 2000 PL/Solutions PL/SQL Tuning and Optimization - page 1

Achieving PL/SQL Excellence

Top 200 Oracle PL/SQL Tips for Tuning

Steven Feuerstein
Me - www.StevenFeuerstein.com

PL/Solutions - www.plsolutions.com
RevealNet - www.revealnet.com

Starbelly.com – www.starbelly.com

9/16/2006 Copyright 2000 PL/Solutions PL/SQL Tuning and Optimization - page 2

One Hour, 200 Tips, No Problem!

Improve the
performance of
your application
1000 fold for

only $19.95 a
month!*

*Plus shipping and handling and technical support. All
performance degradation the responsibility of the user.

9/16/2006 Copyright 2000 PL/Solutions PL/SQL Tuning and Optimization - page 3

Resources for PL/SQL Tuning
Interested in "Oracle tuning"? The world is your oyster:
– Oracle documentation
– Numerous tuning books and web sites
– Many, many tools

But PL/SQL tuning? Slim pickings...
– PL/SQL books and general Oracle tuning books offer some

coverage, but it is minimal and piecemeal.
– Code Complete by Steve McConnell (Microsoft Press)

» Many tuning tips are not language-specific. This book offers an excellent
treatment of tuning philosophies and issues you have to address in any
programming language.

PL/SQL tuning is tough, compared to SQL tuning.
– Optimize algorithms, write SQL in PL/SQL properly, tune PL/SQL

execution in the SGA.

9/16/2006 Copyright 2000 PL/Solutions PL/SQL Tuning and Optimization - page 4

Putting Tuning in Context

Performance is just one aspect of high-quality software
and usually not the most important.

You can’t improve performance without quantitative
analysis.
– Where are the bottlenecks?
– How much did my code’s performance improve?

The 80/20 Rule: most programs spend most of their time in
a small portion of the code.
– Ah, but which portion? This is hard to predict.

OPTIMAL PATH TO OPTIMAL CODE

Write well-structured, readable code following
established best practices.

plvtmr.pkg
tmr81.ot

ovrhead.sql

9/16/2006 Copyright 2000 PL/Solutions PL/SQL Tuning and Optimization - page 5

Possible Tuning Topics for PL/SQL
Analyze Performance of Your Application
Optimize SQL inside Your PL/SQL
Manage Code in the Database and SGA
Optimize Algorithms
Use Data Structures Efficiently

All source code examples downloadable from the
RevealNet PL/SQL Pipeline Archive…
– Under Miscellaneous, PL/SQL Seminar Files
– demo.zip

plvtmr.pkg
tmr81.ot

9/16/2006 Copyright 2000 PL/Solutions PL/SQL Tuning and Optimization - page 6

Writing SQL
in PL/SQL

PL/SQL Tuning and Best Practices

What's the Big Deal?

Some Rules to Follow

Synchronize Code with Data Structures

Avoid Repetition of SQL

Optimize the PL/SQL we write in SQL

9/16/2006 Copyright 2000 PL/Solutions PL/SQL Tuning and Optimization - page 7

"SQL in PL/SQL" Rules to Follow

Rule #2: Never repeat any of the SQL (inserts, updates,
deletes, queries, DDL) in your code.
– Build layers of code around your data structures (table

encapsulation packages).

Rule #1: Write your code so that it
adapts automatically (with
nothing more than a compile) to
changes in the underlying data
structures.
– Anchor declarations with %TYPE and

%ROWTYPE.
– Fetch into records, not variables.

9/16/2006 Copyright 2000 PL/Solutions PL/SQL Tuning and Optimization - page 8

Store all of your SQL inside packages: one per table or
"business object".
– All DML statements written by an expert, behind a procedural

interface, with standardized exception handling.
– Commonly-needed cursors and functions to return variety of data

(by primary key, foreign key, etc.).
– If the encapsulation package doesn't have what you need, add the

new element, so that everyone can take advantage of it.
– Could create separate packages for query-only and change-related

functionality.

Build SQL Encapsulation Packages

te_employee.*

Insert

Update

Delete

GetRow

Employee Application
Code

9/16/2006 Copyright 2000 PL/Solutions PL/SQL Tuning and Optimization - page 9

Answer the Question Being Asked
Are you a good listener?
Listening to what other people
is an excellent skill to have and
develop -- and it applies to
programming as well.

All too often, we don't listen or
read carefully enough to the
requirement -- and we answer
the wrong question.

9/16/2006 Copyright 2000 PL/Solutions PL/SQL Tuning and Optimization - page 10

If We Have At Least One…

How much is wrong with this code?

CREATE OR REPLACE PROCEDURE drop_dept
(deptno_in IN NUMBER, reassign_deptno_in IN NUMBER)

IS
temp_emp_count NUMBER;

BEGIN
-- Do we have any employees in this department to transfer?
SELECT COUNT(*)
INTO temp_emp_count
FROM emp WHERE deptno = deptno_in;

-- Reassign any employees
IF temp_emp_count >0
THEN

UPDATE emp
SET deptno = reassign_deptno_in

WHERE deptno = deptno_in;
END IF;

DELETE FROM dept WHERE deptno = deptno_in;
COMMIT;

END drop_dept;

9/16/2006 Copyright 2000 PL/Solutions PL/SQL Tuning and Optimization - page 11

The Minimalist Approach
At least one row?

More than one row?

BEGIN
OPEN cur;
FETCH cur INTO rec;
IF cur%FOUND
THEN

...

BEGIN
OPEN cur;
FETCH cur INTO rec;
IF cur%FOUND
THEN

FETCH cur INTO rec;
IF cur%FOUND
THEN

...

Use an explicit cursor,
fetch once and then

check the status.

Use an explicit cursor,
fetch once and then

fetch again. "Two
times" is the charm.

atleastone.sql

9/16/2006 Copyright 2000 PL/Solutions PL/SQL Tuning and Optimization - page 12

Give W/One Hand, Take W/the Other
Oracle has a habit of offering improvements in ways that
can make it very difficult for us to take advantage of them.

When are SQL statements the same and yet different?

UPDATE ceo_compensation
SET stock_options = 1000000,

salary = salary * 2.0
WHERE layoffs > 10000;

UPDATE ceo_compensation
SET stock_options = 1000000,

salary = salary * 2
WHERE layoffs > 10000;

begin UPDATE ceo_compensation
SET stock_options = 1000000,
salary = salary * 2 WHERE
layoffs > 10000; end;

BEGIN
UPDATE CEO_COMPENSATION

SET STOCK_OPTIONS = 1000000,
SALARY = SALARY * 2.0

WHERE LAYOFFS > 10000;
END;

begin update ceo_compensation
set stock_options = 1000000,

salary = salary * 2.0
where layoffs > 10000; end;

All these statements are executed at 10 AM.
How many times does Oracle parse?

9/16/2006 Copyright 2000 PL/Solutions PL/SQL Tuning and Optimization - page 13

SQL Cursors in the SGA
As of Version 7, all parsed cursors (SQL statements as
well as PL/SQL blocks) are cached in the SGA.
Every time you request a parse (again: SQL and PL/SQL
blocks), Oracle hashes the string.
– If it finds an exact, physical match already in the SGA, then it uses

that pre-parsed cursor.
– This can lead to significant performance improvements.
– But also a problem: we live, work and breathe at the logical level.

Now we have to be aware of the physical form of our code!

Some things to keep in mind:
– White space counts -- unless the SQL statement is executed inside

a PL/SQL block.
– In this case, the PL/SQL engine does some pre-formatting -- all

upper case, no extra white space.

9/16/2006 Copyright 2000 PL/Solutions PL/SQL Tuning and Optimization - page 14

Analyzing SGA-Cached Cursors
The best way to understand the requirements and activity
of the PL/SQL code in the SGA is to look at the SGA.

Oracle offers a variety of data structures to get this
information:
– V$ROWCACHE: check for data dictionary cache hits/misses
– V$LIBRARYCACHE: check for object access hits/misses
– V$SQLAREA: statistics on shared SQL area, one row per SQL

string (cursor or PL/SQL block)
– V$DB_OBJECT_CACHE: displays info on database objects that are

cached in the library cache.

grantv$.sql
insga.pkg
similar.sql

SQL> exec insga.show_similar
*** Possible Statement Redundancy:

begin fix_me (1); end;
begin fix_me(1); end;

*** Possible Statement Redundancy:
select * from EMP
select * from emp

9/16/2006 Copyright 2000 PL/Solutions PL/SQL Tuning and Optimization - page 15

Best Way to Code Single Row Query?

The real question is how can we make sure that our
queries are always encapsulated?

Reuse: There is no way to reuse an implicit cursor, except by calling
the program in which the cursor is executed. A cursor declared in a
package specification can be used in multiple programs.

Performance: Implicits in 7.3 and above can be faster than explicits.
Implicits are more likely, however, to be coded repetitively. Explicit
cursors improve chance of using pre-parsed SQL in the SGA

Programmatic control: With explicits, you're not forced into the
exception section when various data conditions arise.

Developer productivity: Why lose time trying to decide which way to code
each single-row queries? Give yourself one less thing to think about.

explimpl.sql
explimpl.pkg

Let's end the debate over implicit vs. explicit cursors.
There are pluses and minuses for each approach...

9/16/2006 Copyright 2000 PL/Solutions PL/SQL Tuning and Optimization - page 16

Don't Dither – Encapsulate!

explimpl.pkg

Whichever way you go, put the logic in a function.

FUNCTION i_empname (
employee_id_in IN

employee.employee_id%TYPE)
RETURN fullname_t

IS
retval fullname_t;

BEGIN
SELECT last_name

INTO retval
FROM employee

WHERE employee_id =
employee_id_in;

RETURN retval;
EXCEPTION

WHEN NO_DATA_FOUND
THEN RETURN NULL;
WHEN TOO_MANY_ROWS
THEN log_error; RAISE;

END;

FUNCTION e_empname (
employee_id_in IN

employee.employee_id%TYPE)
RETURN fullname_t

IS
rec allcols_cur%ROWTYPE;

BEGIN
OPEN allcols_cur (employee_id_in);
FETCH allcols_cur INTO rec;
CLOSE allcols_cur;

IF rec.employee_id IS NOT NULL
THEN

RETURN rec.last_name)
ELSE

RETURN NULL;
END IF;

END;

9/16/2006 Copyright 2000 PL/Solutions PL/SQL Tuning and Optimization - page 17

Ah, the Wonders of Dynamic SQL!

CREATE OR REPLACE PROCEDURE updnumval (
col_in IN VARCHAR2,
ename_in IN emp.ename%TYPE,
val_in IN NUMBER)

IS
cur PLS_INTEGER := DBMS_SQL.OPEN_CURSOR;
fdbk PLS_INTEGER;
dmlstr PLV.dbmaxvc2 :=
'UPDATE emp SET ' || col_in || ' = ' || val_in ||

' WHERE ename LIKE UPPER (''' || ename_in || ''')';
BEGIN

DBMS_SQL.PARSE (cur, dmlstr, DBMS_SQL.NATIVE);

fdbk := DBMS_SQL.EXECUTE (cur);

DBMS_OUTPUT.PUT_LINE (
'Rows updated: ' || TO_CHAR (fdbk));

DBMS_SQL.CLOSE_CURSOR (cur);
END;
/

Just throw a bunch of
strings together and off

you go!
Well, maybe not...

9/16/2006 Copyright 2000 PL/Solutions PL/SQL Tuning and Optimization - page 18

DynSQL: Bind Whenever Possible
You can concatenate rather than bind, but binding is
almost always preferable. Two key reasons:
– Simpler code to build and maintain
– Improved application performance

Simpler code to build and maintain
– Concatenation results in much more complicated and error-prone

code unless you are doing a very simple operation.

Improved application performance
– Concatenates requires an additional call to DBMS_SQL.PARSE

and also increases the likelihood that the SQL statement will be
physically different, requiring an actual re-parsing and
unnecessary SGA utilization.

Note: you cannot bind schema elements, like table names.
effdsql1.sql
effdsql.tst

updnval2.sp
updnval3.sp

9/16/2006 Copyright 2000 PL/Solutions PL/SQL Tuning and Optimization - page 19

Optimize Algorithms

PL/SQL Tuning & Best Paractices

Avoid Unnecessary Code Execution
Answer the Question Being Asked
Do Lots of Stuff At the Same Time
Avoid the Heavy Lifting

9/16/2006 Copyright 2000 PL/Solutions PL/SQL Tuning and Optimization - page 20

Do No Unnecessary Thing - 1
What’s wrong with this code?

DECLARE
CURSOR emp_cur
IS

SELECT last_name, TO_CHAR (SYSDATE, 'MM/DD/YYYY') today
FROM employee;

BEGIN
FOR rec IN emp_cur
LOOP

IF LENGTH (rec.last_name) > 20
THEN

rec.last_name := SUBSTR (rec.last_name, 20);
END IF;
process_employee_history (rec.last_name, today);

END LOOP;
END;
/

slowalg_q1.sql
slowalg_a1.sql

9/16/2006 Copyright 2000 PL/Solutions PL/SQL Tuning and Optimization - page 21

Do No Unnecessary Thing - 2
This program is running slowly. How can I improve it?
– This is a test of analyzing algorithms for unnecessary and/or slow

program performance, and tuning of DBMS_SQL code.

CREATE OR REPLACE PROCEDURE insert_many_emps
IS

cur INTEGER := DBMS_SQL.open_cursor;
rows_inserted INTEGER;

BEGIN
DBMS_SQL.parse (cur,

'INSERT INTO emp (empno, deptno, ename)
VALUES (:empno, :deptno, :ename)',

DBMS_SQL.native);

FOR rowind IN 1 .. 1000
LOOP

DBMS_SQL.bind_variable (cur, 'empno', rowind);
DBMS_SQL.bind_variable (cur, 'deptno', 40 * rowind);
DBMS_SQL.bind_variable (cur, 'ename', 'Steven' || rowind);
rows_inserted := DBMS_SQL.execute (cur);

END LOOP;

DBMS_SQL.close_cursor (cur);
END;

slowsql_q2.sql
slowsql_a2.sql
slowsql_a2.tst

loadlots*.*

9/16/2006 Copyright 2000 PL/Solutions PL/SQL Tuning and Optimization - page 22

IF There Are Too Many IFs…
How can I optimize this code?

PROCEDURE exec_line_proc (line IN INTEGER)
IS
BEGIN

IF line = 1 THEN exec_line1; END IF;
IF line = 2 THEN exec_line2; END IF;
IF line = 3 THEN exec_line3; END IF;
...
IF line = 2045 THEN exec_line2045; END IF;

END;

slowalg_q2.sql
slowalg_a2.sql

So big, it
won’t even

compile

9/16/2006 Copyright 2000 PL/Solutions PL/SQL Tuning and Optimization - page 23

Use Data
Structures
Efficiently

PL/SQL Tuning and Best Practices

9/16/2006 Copyright 2000 PL/Solutions PL/SQL Tuning and Optimization - page 24

Shortest Path Between Two Points?

What’s the shortest/fastest way to connect these two?
– Keep the data as close as possible to the user/program that needs

the data.

Packages offer an ideal caching mechanism.
– Any data structure defined at the package level (whether in

specification or body) serves as a persistent, global structure.
– Remember: separate copy for each connection to Oracle

Data User

9/16/2006 Copyright 2000 PL/Solutions PL/SQL Tuning and Optimization - page 25

Cache Session-static Information
Great example: the USER function.
– The value returned by USER never changes in a session.
– Each call to USER is in reality a SELECT FROM dual.
– So why do it more than once?

CREATE OR REPLACE PACKAGE thisuser
IS

FUNCTION name RETURN VARCHAR2;
END;

CREATE OR REPLACE PACKAGE BODY thisuser
IS

/* Persistent "global" variable */
g_user VARCHAR2(30) := USER;

FUNCTION name RETURN VARCHAR2 IS
BEGIN

RETURN g_user;
END;

END;

thisuser.pkg
thisuser.tst

emplu.*

Hide package data!
– If exposed, you

cannot guarantee
integrity of data.

– Build "get and set"
programs around it.

9/16/2006 Copyright 2000 PL/Solutions PL/SQL Tuning and Optimization - page 26

Leverage Oracle Hashing
Hashing algorithms transform strings to numbers.
– Standard usage: generate unique values for distinct strings.

FUNCTION DBMS_UTILITY.GET_HASH_VALUE
(name IN VARCHAR2,
base IN NUMBER,
hash_size IN NUMBER)

RETURN NUMBER;

Provide the string, the base or starting point, and the
hash size (total number of possible return values).

Tips for hashing:
– You must use the same base and hash size to obtain consistent

hash values.
– Maximum hash size is upper limit of BINARY_INTEGER: 2**31-1.
– No guarantee that two different strings will not hash to the same

number. Check for and resolve conflicts.

9/16/2006 Copyright 2000 PL/Solutions PL/SQL Tuning and Optimization - page 27

Data Table

Hashing for an Alternative Index
Index-by tables allow only a single index -- the row number.
– So to locate the row in which a particular string is located, you have

to do a "full table scan" -- or do you?

Use the hash function to build an alternative index to the
contents of the PL/SQL table.

altind*.pkg
altind.tst

78955 10551055 SMITH, 12-JAN-99, ...

203055 34583458 FELLON, 10-MAR-82, ...

1109878 79887988 DIONA, 22-JUL-90, ...

Hash Name to
Produce Alt Index Row #

Complete the round trip to find the row for a name.

Indexing Table

SMITH

FELLON

DIONA

Row # Row #Full Set of Employee Data Employee ID and Name

Row # is
employee

ID
number.

9/16/2006 Copyright 2000 PL/Solutions PL/SQL Tuning and Optimization - page 28

Yes, You Can Write Blazing Fast PL/SQL!

VROOOM, VROOM!
– (This may be the closest you get to driving around in the types of

cars preferred by Our Most Exalted Larry Ellison)

Tuning PL/SQL code is an iterative and incremental
process.
– You are unlikely to uncover a "silver bullet" that is not related to

some SQL statement.
– You can, however, have a substantial impact on the performance

of your and others' code.

9/16/2006 Copyright 2000 PL/Solutions PL/SQL Tuning and Optimization - page 29

Closing Comments

Write code with efficiency in mind, but save intensive
tuning until entire components are complete and you can
perform benchmarking.

MOST IMPORTANT! Avoid repetition and dispersion of
SQL statements throughout your application.

Be especially careful to analyze code executed within
loops (including SQL statements).

PL/SQL code is executed from shared memory. You must
tune the shared pool to avoid excessive swapping of code.

Visit the PL/SQL Pipeline (www.revealnet.com/plsql-pipeline) to share
what you learn about tuning and to get your questions answered.

9/16/2006 Copyright 2000 PL/Solutions PL/SQL Tuning and Optimization - page 30

PL/SQL Happy Hour!
Sponsored by O'Reilly and Associates and the Oracle
PL/SQL Development Team.

Drinks, snacks, discussion and "news you can use" from:
– Chris Racicot, Senior Manager, PL/SQL and Precompilers, Oracle

Corporation
– Steve Muench, author of Building Oracle XML Applications, and

Lead XML Evangelist & Consulting Product Manager BC4J & XSQL
Servlet DevelopmentTeams

– Bill Pribyl, author of Oracle PL/SQL Language Pocket Reference,
andco-author of Oracle PL/SQL Language Pocket Reference

– And I'll throw in a few words on utPLSQL, a fantastic new utility for
unit testing of PL/SQL code.

Monday, October 2, 2000
San Francisco Marriott Hotel, 55 Fourth Street

6:30 pm - 8:30 pm

